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Abstract

Transfer learning has been successfully applied to the credit1

risk domain to predict the probability of default for “new2

to credit” individuals and small businesses. However when3

the source and target domains differ, we propose a domain4

adaptation approach to adjust the source domain features. We5

find that adaptation improves model accuracy in addition to6

the improvement by transfer learning. We propose and test a7

combined strategy of feature selection and an adaptation al-8

gorithm to convert values of source domain features to mimic9

target domain features. We find that transfer learning im-10

proves model accuracy by increasing the contribution of less11

predictive features. Although the percentage improvements12

are small, such improvements in real world lending would be13

of great economic importance. Our contribution also includes14

a strategy to choose features for adaptation and an algorithm15

to adapt values of these features.16

Introduction17

Globally in 2014, 42% of all adults reported borrowing in18

the past 12 months (excluding credit cards). In developing19

economies three times as many adults borrowed from fam-20

ily or friends as from a financial institution. Borrowing from21

an institution has benefits over borrowing from family or22

friends, by providing access to sufficient funds and likely23

better credit terms under regulation (World Bank 2017). Ac-24

cess to formal credit has become an issue for young adults25

in developed countries too. Bankrate’s survey found that26

58% of millennials (born between 1981 and 1996) in the27

United States have been denied at least one financial prod-28

uct because of their credit score (BankRate 2019). As well,29

fintech-based financing products, such as Alipay, Affirm,30

Klarna, Paypal Credit and Afterpay, have become popular31

with millennials and Generation Z (born between 1997 and32

2010). Can we leverage this “alternative lending” data to33

improve prediction of credit behaviour and hence access to34

credit for people with limited traditional credit history?35

Transfer learning can be the bridge linking alternative36

lending data and traditional credit history assessment, e.g.,37

credit bureau scores. Suryanto et al. (2019) (Suryanto et al.38

2019) showed transfer learning improved the accuracy of39

credit scoring. To adopt this approach in the real world, two40

questions need to be answered.41

The first is to explain transferred models. Many juris- 42

dictions require credit decisions to be explained for anti- 43

discrimination and human rights purposes. For example, 44

the General Data Protection Regulation (GDPR) in the Eu- 45

ropean Union requires “meaningful information about the 46

logic involved” in automated decisions, providing an expla- 47

nation that enables a data subject to exercise their rights un- 48

der GDPR and human rights law (Selbst and Powles 2017). 49

SHAP (Lundberg and Lee 2017) is one of the most popular 50

methods for explaining machine learned models. In this pa- 51

per we apply SHAP to analyse the contribution of features 52

and the impact of transfer. 53

The second question is how to handle the difference in 54

features between source and target domains. For instance, 55

a source domain could be for a small short-term alternative 56

loan, but the target domain may be for large and long-term 57

instalment loans. Key features, such as loan amount, loan 58

terms, interest cover, etc. can differ between these domains. 59

We could use the progressive shifting contribution network 60

proposed in (Suryanto et al. 2019) that combines source and 61

target domain feature learning to improve model accuracy, 62

but a key question that remains is: can we adapt the features 63

before transfer learning to get more accurate models? 64

In this paper we develop an approach to this ques- 65

tion based on three approaches. First, we use a Kol- 66

mogorov–Smirnov (KS) test to quantify the difference be- 67

tween source and target domains, and use domain adapta- 68

tion to treat only features that differ substantially between 69

the domains before training. Second, after we find candi- 70

date features to be adapted, based on their KS differences, 71

we include other features that are highly correlated with the 72

candidate features and test the accuracy of models adapting 73

these feature combinations. Finally, we exclude from adap- 74

tation features related to a borrower’s credit history where 75

the adaptation would incorrectly impact the classification. 76

The rest of the paper is organised as follows. In Section we 77

describe key aspects of the problem and in Section related 78

work. In Section we elaborate details of the data and meth- 79

ods; in Section , the experimental results and in Sections 80

and discussion and conclusions. 81



Credit Scoring and Decisioning82

A lender’s goal is to maximise the risk adjusted return within83

their risk appetite. Accurately assessing credit risk is key84

to balancing risk and return. The concept of Expected Loss85

(EL) is commonly used to measure credit risk. EL is mainly86

determined by the Probability of Default (PD), Exposure at87

Default and Loss Given Default. The key prediction model88

is a credit scoring model, which calculates the PD of a loan89

or loan application. Inputs to a credit scoring model are at-90

tributes of the person or entity applying for the loan, such91

as credit history, credit bureau score and employment, and92

requested loan attributes, such as loan amount and term.93

Lenders then use the credit score and other decision rules94

to decide whether to approve or decline a loan application,95

and for those approved what to offer in credit terms. De-96

cision rules typically include: eligibility, e.g., age limit, re-97

siding jurisdiction; expert assessment of risks, e.g., manual98

reviews and override; credit scoring and rating, i.e. mapping99

the credit score to different credit ratings; and a decision ta-100

ble or scale, e.g., decline under a certain rating level, or set101

the maximum loan amount at certain ratings.102

In this paper we use a score from 0 to 1 for PD models,103

which is an estimated probability of default, calibrated using104

test data. Our focus is on using transfer learning to predict105

PD, so we measure the accuracy of our credit scoring mod-106

els using the Area Under Receiver Operating Curve (AUC).107

This metric is used to directly assess model accuracy, based108

on PD, without needing to convert the PD into a binary109

“yes” or “no”. The quality of binary classifications depends110

not only on the PD model, but also on decision rules such111

as those above.112

Related Work113

Transfer learning and domain adaptation are mostly applied114

in computer vision (Wang and Deng 2018), speech recog-115

nition (Deng et al. 2013), and natural language processing116

(Mou et al. 2016). Transfer learning has also been proposed117

to improve reinforcement learning in the Atari game do-118

main. Rusu et al. (2016) (Rusu et al. 2016) presented the119

Progressive Network, a transfer learning approach based on120

a neural network where the network was initially trained121

using source domain data. Next, one or more of the last122

layers of the network were retrained using target domain123

data (Rusu et al. 2016). Using a similar approach, Suryanto124

et al. (Suryanto et al. 2019) proposed transfer learning based125

on the progressive network configuration, applied to credit126

risk where the contribution of the source and the target do-127

mains can be shifted to optimize the model performance.128

There have been other recent studies applying transfer learn-129

ing in the credit risk domain, mostly for credit scoring130

rather than credit decisioning (Beninel, Waad, and Mufti131

2012), (Stamate, Magoulas, and Thomas 2015), (Suryanto132

and Compton 2004).133

While the terms “transfer learning” and “domain adapta-134

tion” have been used interchangeably, we use transfer learn-135

ing when the focus is the modelling configuration, and do-136

main adaptation when the focus is on transforming the data.137

There are only a few published studies on domain adaptation138

for credit risk, e.g., Huang et al. (2018) proposed domain 139

adaptation for transforming the data distribution (Huang and 140

Chen 2018). In other domains approaches such as Balanced 141

Distribution Adaptation (Wang et al. 2017) and adapting 142

without target label have been used (Kouw and Loog 2019; 143

Zhang, Li, and Ogunbona 2018; Huang and Chen 2018). 144

In this paper we adopt a Progressive Network configura- 145

tion for transfer learning, similar to Rusu et al. (Rusu et al. 146

2016). The contribution of our paper is a strategy to apply 147

domain adaptation to the source data when target data with 148

labels is limited, and to apply both domain adaptation and 149

transfer learning to credit risk. 150

Data and Methods 151

Data 152

In this paper, we used data from the “lendingclub.com” 153

dataset1 to illustrate our approach. We used the purpose of 154

the loans to define different domains. Loans for different 155

purposes have different default rates and different loan pa- 156

rameters, such as the typical loan amount and the terms. The 157

experiments in this paper were based on data for three dif- 158

ferent purposes: 159

• Data where the purpose of the loan was credit card and 160

debt consolidation, which is referred to as CD. 161

• Data where the purpose of the loan was medical, referred 162

as MD. 163

• Data where the purpose of the loan was small business 164

lending, referred as SB. 165

In this empirical study, we used Lending Club (LC) data 166

between 2007 and 2011, the early period of the Lending 167

Club, to mimic a lender starting to offer new loan products 168

to new customer segments. We used the CD dataset as the 169

source domain, as it had sufficient instances, and the MD 170

and SB datasets as target domains for transfer learning. Do- 171

main details are illustrated in Table 1. 172

Table 1: Loan domains by purpose

No Domain Number of Rows Default Rate
1 CD 28,813 14.03%
2 MD 695 15.25%
3 SB 1,813 26.16%

To predict loan outcomes, we selected the 12 input fea- 173

tures listed in Table 2. The PD model predicts whether loans 174

should be classified as default or not. We use loan status to 175

determine this outcome, as shown in Table 3. Based on our 176

experience in credit risk, we only include loans with the loan 177

status of Charged off or Late (31-120 days) as default, i.e., 178

bad loans, and Fully Paid as good loans. We exclude current 179

loans (not due yet), and loans less than 30 days late, which 180

will normally be repaid but for which there are no results 181

yet. 182

1See https://www.lendingclub.com/info/download-data.action



Table 2: Input features

No Short Name Feature Name & Description
1 term 36m Term 36 month; The 36-month pay-

ment on the loan
2 term 60m Term 60 month; The 60-month pay-

ment on the loan
3 grade n Grade; Lending Club (LC) assigned

loan grade
4 sub grade n Sub grade; LendingClub assigned

loan subgrade
5 int rate n Interest rate; Interest rate on the loan
6 revol util n Revolving util. rate; Revolving line

utilisation rate: the amount of credit
relative to all available revolving
credit

7 emp length n Employment Length; Employment
length in years: Values between 0 and
10 where 0 means less than one year
and 10 means ten or more years.

8 dti n Debt to income ratio; The ratio of
the borrower’s total monthly debt
payments on the total debt obliga-
tions, excluding mortgages and the
requested LC loan, to the borrower’s
self-reported monthly income

9 installment n Installment; The monthly payment
owed by the borrower if the loan is
made

10 annual inc n Annual income; The combined self-
reported annual income provided by
the co-borrowers during registration

11 loan amnt n Loan amount; The listed amount of
the loan applied for. If at some time,
the credit department reduces the
loan amount, this will be reflected in
this value.

12 cover Cover; A ratio calculated using the
annual income on the loan amount
(annual inc n/loan amnt n)

Transfer Learning183

In this paper we use one of the neural network configura-184

tions proposed in (Suryanto et al. 2019) for transfer learn-185

ing. The neural network comprises an input layer with 12186

input nodes, aligned with 12 input features. The output layer187

consists of one output node. The output is a score between 0188

and 1. This score is calibrated to be the probability of default189

(PD) as illustrated in Fig. 1. As our aim is to accurately pre-190

dict defaults in the target domain, we first trained the model191

using source domain data, and then retrained the last layer192

with target domain data. We tested the accuracy of the trans-193

ferred model using target domain data.194

For comparison, we trained a “target model” using a sim-195

ilar neural network configuration with purely target domain196

data, and tested this on other target domain data. Suryanto et197

al. (2019) tested this configuration with state-of-the-art ma-198

Table 3: Outcome to predict: default or not

No Loan Status Description Outcome
1 Charged off The loan has not

been paid
1

2 Fully Paid The loan has been
fully paid

0

3 Current Payment is not due
yet

excluded

4 In Grace
Period

Payment is less than
16 days late

excluded

5 Late (16-30
days)

Payment is late be-
tween 16 and 30 days

excluded

6 Late
(31-120
days)

Payment is late be-
tween 31 and 120
days

1

Figure 1: Transfer learning setup: layers B, C, D, and E are
first trained using the Source Domain, then the last layer
is retrained using the Target Domain; more precisely, the
weights of the edges between layers D and E are retrained.

chine learning techniques for credit risk, e.g., gradient boost- 199

ing machines, and the performance is equivalent (Suryanto 200

et al. 2019). We used 10-fold cross validation, repeated 10 201

times using different random seeds, for all training and test- 202

ing. 203

To answer the two questions on explainability and domain 204

differences, we designed a set of experiments as described in 205

the following sections. 206



Domain Differences207

To understand the differences between source and target do-208

mains, we use Kolmogorov–Smirnov (KS) tests to quantify209

the difference for each feature. The KS test can be used to210

compare two samples without making an assumption about211

the distribution of data. The null hypothesis is that the two212

samples, source and target data, come from the same dis-213

tribution. The KS test produces a KS-statistic and p-value.214

The KS-statistic represents the maximum distance between215

the source data and the target data distributions. The p-value216

represents the significance level, e.g., less than 0.05. We217

used the maximum distance between the source data and218

the target data distribution curves (KS-statistic) to provide219

insights about the differences in features between these two220

domains.221

Domain Adaptation222

Domain adaptation aims to transform the source data distri-223

bution to be similar to the target data distribution. The inten-224

tion is to use latent features constructed using source data to225

complement the target data. We propose the following ap-226

proach to adapt the feature distribution of the source data to227

mimic the feature distribution of target data. For each fea-228

ture, the adaptation steps are:229

1. Group the source data and the target data in N quantiles,230

where N should be selected to ensure that we have suffi-231

cient data for each quantile, e.g., more than 50 samples. In232

this study, we selected N = 10, after experimenting with233

various N values.234

2. For each corresponding source and target quantiles, cal-235

culate scale, then adapt/adjust the source feature values:236

scale =
(max(target value)−min(target value))

(max(source value)−min(source value))
(1)237

offset = (source value−min(source value) ∗ scale
(2)238

adapted source value = min(target value) + offset
(3)

The adapted source features are used to initially train the239

neural network before the last layers are retrained using the240

target features.241

Based on observation of explainer models and feature dif-242

ferences, we adapted different sets of features before train-243

ing, and then trained and tested using the method described244

in Section on Transfer Learning. We then compared the per-245

formance of models (using AUC) with different adaptation246

sets, and transferred models without adaptation. We found247

that adapting all features significantly reduces accuracy, so248

we tried different combinations of features to adapt to find249

the most accurate adapted models.250

Experiments and Results251

Transfer Learning252

Table 4 shows the AUC comparison for target and the trans-253

ferred model. The accuracy of the transferred models was254

better than for the target models; AUC improved 0.042 or255

7% for the MD domain, and 0.0224 or 3.6% for the SB do- 256

main, respectively. This is in line with the results of Suryanto 257

el al. (Suryanto et al. 2019) 258

Table 4: Target model vs. transferred model

Domain & Experiment AUC Improve
ment

p-
value

CD to MD; Training using
Target only

0.5971
±0.08

CD to MD; Training using
Source then retraining the

last layer using Target

0.6391
±0.09

0.0420
(7.0%)

<0.01

CD to SB; Training using
Target only

0.6194
±0.05

CD to SB; Training using
Source then retraining the

last layer using Target

0.6419
±0.05

0.0224
(3.6%)

<0.01

To understand the contribution of “cover”, we calculated 259

KS-statistics which represents the difference in value dis- 260

tribution for “cover” between source and target domains as 261

shown in Figure 2 where source was CD and target was MD 262

(KS-statistics: 0.2736) and Figure 3 where source was CD 263

and target was SB (KS-statistics: 0.0585). The X-axis rep- 264

resents the value of “cover” and the Y-axis represents the 265

number of loans. Further results are presented in following 266

sections. 267

Figure 2: Distribution of cover: CD vs MD



Figure 3: Distribution of cover: CD vs SB

Domain Difference268

Table 5 lists KS-statistics for CD vs. MD as well as CD vs.269

SB. It shows that some features were very different between270

source and target domains, but some were similar. It also271

shows that different pairings of source and target domains272

had different patterns in feature differences. For example,273

“cover” was very different between CD and MD with a KS-274

statistic of 0.2729, but similar between CD and SB with a275

KS-statistic of 0.0502.276

Table 5: KS of input features

CD vs. MD CD vs. SB
No Short Name KS

stats
KS p-
value

KS
stats

KS p-
value

1 term 36m 0.0407 <0.24 0.0357 <0.20
2 term 60m 0.0407 <0.24 0.0357 <0.20
3 grade n 0.0792 <0.01 0.0984 <0.01
4 sub grade n 0.0884 <0.01 0.1069 <0.01
5 int rate n 0.0941 <0.01 0.1033 <0.01
6 revol util n 0.2248 <0.01 0.2292 <0.01
7 emp length n 0.0242 <0.85 0.0749 <0.01
8 dti n 0.1502 <0.01 0.2295 <0.01
9 installment n 0.3005 <0.01 0.0671 <0.01

10 annual inc n 0.0670 <0.01 0.0906 <0.01
11 loan amnt n 0.2899 <0.01 0.0813 <0.01
12 cover 0.2736 <0.01 0.0585 <0.01

Domain Adaptation 277

To further understand the contribution of “cover”, we tested 278

our proposed domain adaptation function on “cover”. Be- 279

fore we trained the transfer model on the source data, we 280

adapted cover on source data to make it similar to the tar- 281

get data, and then applied the transfer learning technique to 282

produce an “adapted” and transferred model. The AUC tests 283

for these adapted and transferred models are listed in Table 284

6 where they are compared to the transferred model without 285

adaptation. We have run paired t-tests to test the improve- 286

ments shown in table 6, 7, 8; the improvements were all sta- 287

tistically significant with p-values <0.01. T-tests were ap- 288

propriate because this data was normally distributed. Adapt- 289

ing cover works for CD to MD transfer with an AUC 0.01 290

(1.6%) higher than the transfer-only model, but AUC de- 291

creases for a CD to SB transfer. 292

Table 6: Adapted model vs. transferred model

Domain &
Experiment

AUC Improve
ment

p-
value

CD to MD;
Transfer only

0.6391
±0.0856

CD to MD;
Transfer with
cover adapted

0.6491
±0.0824

0.0100
(1.6%)

<0.01

CD to SB;
Transfer only

0.6419
±0.0509

CD to SB;
Transfer with
cover adapted

0.6361
±0.0502

−0.0058
(−0.9%)

<0.01

We tested various permutations of features to adapt to 293

find the most accurate model for the CD to MD transfer, 294

and to establish an optimal strategy for seeking the most 295

accurate adapted model. The experiments on the CD to 296

MD transfer are listed in Table 7. Adapting all features, or 297

adapting credit grade and related features, significantly re- 298

duced model accuracy, with AUC 0.1771 (27.7%) or 0.1756 299

(27.5%) lower than the transfer-only model, respectively. 300

Adapting only features with a high KS-statistic (over 0.15), 301

i.e., revolving utility, debt to income ratio, installment, loan 302

amount, and cover, improved accuracy with AUC 0.0172 303

(2.7%) higher than the transfer-only model. Adding related 304

features, i.e., annual income (annual inc n) – which is used 305

to derive cover (a high KS feature), further improved accu- 306

racy, with AUC 0.0209 (3.3%) higher than the transfer-only 307

model. Removing credit history features that are intrinsic to 308

the borrower, i.e., revolving utility and debt to income ratio, 309

produced an even more accurate model, with AUC 0.0257 310

(4.0%) higher than the transfer-only model. 311

Grade, sub-grade, revolving utility (revol util n), and debt 312

to income ratio (dti n) are features derived from credit his- 313

tory, which are intrinsic to the borrower and are usually 314

highly correlated with the lending outcome, i.e., default or 315

not. The interest rate in the lending club data is derived di- 316

rectly from grade and sub-grade, so we consider it as a credit 317

history feature in our experiment. 318



Table 7: Adapted model vs. transferred model in CD to MD
transfer

Experiment AUC Improve
ment

p-
value

Transfer only 0.6391
±0.0856

Adapt all features 0.4620
±0.3048

−0.1771
(−27.7%)

<0.01

Adapt credit grade
and related features,
i.e. grade, sub-grade,

interest rate

0.4635
±0.3052

−0.1756
(−27.5%)

<0.01

Adapt features with
high KS, i.e.

revolving utility,
debt to income ratio,

installment, loan
amount and cover

0.6563
±0.0806

0.0172
(2.7%)

<0.01

Adapt features with
high KS and related

features, i.e.
revolving utility,

debt to income ratio,
installment, loan

amount, cover and
annual income

0.6600
±0.07417

0.0209
(3.3%)

<0.01

Adapt features with
high KS and related
features less credit
history features, i.e.

installment, loan
amount, cover and

annual income

0.6649
±0.0731

0.0257
(4.0%)

<0.01

The AUC comparison with the transfer-only model is319

shown in Table 8. Adapting all features, or credit grade re-320

lated features, significantly reduced model accuracy, with321

AUC 0.123 (19.3%) or 0.1106 (17.2%) lower than the322

transfer-only model, respectively. We tested adaptation of323

the features that we adapted for the most accurate model324

of the CD to MD transfer, which have a low KS-statistic325

from CD and SB comparisons. This adapted model was326

slightly less accurate, with an AUC 0.0015 (0.2%) lower327

than the transfer-only model. Adapting features with a high328

KS-statistic, i.e., revolving utility and debt to income ratio,329

improved model accuracy slightly, with AUC 0.0018 (0.3%)330

higher than the transfer-only model. These two features do331

not have related features, and both were credit history fea-332

tures, so we could not improve accuracy further as we did333

with the CD to MD transfer.334

Additionally, we investigated the explainability of the335

most accurate models using SHAP. Figures 4 and 5 show the336

feature contributions of the most accurate adapted models337

comparing to the source and target models. Through domain338

adaptation, the contribution of weak features increased in339

the most accurate adapted models. For the CD to MD trans-340

Figure 4: Feature contribution of the most accurate adapted
model in CD to MD transfer

Figure 5: Feature contribution of the most accurate adapted
model in CD to SB transfer

fer, the contribution of annual income, cover, installment and 341

loan amount increased. For the CD to SB transfer, the con- 342

tribution of annual income, term 36 months or 60 months, 343

cover, employment length, installment and loan amount in- 344

creased. 345

To evaluate the effectiveness of our adaptation approach 346

we compared KS values before and after adaptation for the 347

most accurate models, as shown in Table 9. The reduction 348

in KS-statistics was between 44.8% and 90.3%, and for fea- 349

tures with high KS-statistics (over 0.15) the reductions were 350

all above 67.4%. Our adaptation approach successfully re- 351

duced the differences between the distribution of the source 352

data and the target data. 353

Discussion 354

Transfer Learning improves model accuracy through gen- 355

erating intermediate features from the source domain to be 356

selected for retraining on the target domain. This interme- 357

diate features generation concept is similar to “self taught 358

learning” proposed by Raina et al. (2007) (Raina et al. 359



Table 8: Adapted model vs. transferred model in CD to SB
transfer

Experiment AUC Improve
ment

p-
value

Transfer only 0.6419
±0.0509

Adapt all features 0.5189
±0.1666

-0.123
(-19.2%)

<0.01

Adapt credit grade
and related features,
i.e. grade, sub-grade,

interest rate

0.5313
±0.1624

-0.1106
(-17.2%)

<0.01

Adapt features used in
CD to MD transfer,
i.e. installment, loan

amount, cover, annual
income

0.6404
±0.0475

-0.0015
(-0.2%)

<0.01

Adapt features with
high KS, i.e. revolving

utility and debt to
income ratio

0.6437
±0.0495

0.0018
(0.3%)

<0.01

2007), which constructed higher-level features using unla-360

belled data, except that in this paper we used labelled data361

from the source domain.362

The contribution of a weak feature from the target domain363

increased because it was complemented by new intermediate364

features from the source domain. We tested an adaptation365

approach taking the outcome label into consideration. But366

this did not improve model accuracy. The reason was that367

the population of positive (outcome=1) cases was too small368

in the already small target dataset.369

Adapting strong credit history features, such as grade and370

sub-grade, significantly reduced model accuracy, while re-371

moving features related to credit history from the adapta-372

tion list improved model accuracy. Adapting credit history373

related features without consideration of the outcome label374

generates unrealistic instances, e.g., changing a borrower’s375

credit grade from high to low without adjusting the outcome376

from not default to default. These unrealistic instances can377

negatively impact model accuracy.378

Conclusion379

Domain adaptation with the right set of features further im-380

proved the accuracy of transfer learning models. However,381

adapting all features normally reduces model accuracy sig-382

nificantly. Reasons to select features to adapt include: dif-383

ferences in feature distribution between source and target384

domain, quantified by KS-statistics; relationships to already385

selected features; and domain specific knowledge, e.g., the386

credit history features intrinsic to the borrowers.387

Through domain adaptation, the contribution of weaker388

features increased in the most accurate adapted models. An389

adaptation approach that significantly reduces KS-statistics390

has been critical in producing a successful domain adapta-391

tion algorithm.392

Table 9: Kolmogorov-Smirnov test to compare source data
and target data, before and after the source data is adapted,
ACD is the abbreviation for Adapted Credit card and Debt
consolidation data.

CD to MD
No adaptation

ACD to MD
with adaptation

Feature KS-
stats

p-
value

KS-
stats

p-
value

Reduc
-tion

installment 0.3005 <0.01 0.0293 <0.64 90.3%
annual inc 0.0670 <0.01 0.0369 <0.34 44.8%
loan amnt 0.2899 <0.01 0.0681 <0.01 76.5%

cover 0.2736 <0.01 0.0892 <0.01 67.4%
CD to SB

No adaptation
ACD to SB

with adaptation
Feature KS-

stats
p-

value
KS-
stats

p-
value

Reduc
-tion

revol util 0.2292 <0.01 0.0536 <0.01 76.6%
dti 0.2295 <0.01 0.0301 <0.39 86.9%

For future work, the proposed strategy to select features 393

for domain adaptation produces more accurate credit scoring 394

models, but execution of the strategy requires human inter- 395

vention in observing and applying domain knowledge. We 396

will further explore methods to automate this selection strat- 397

egy, so it can be a pre-processing step for fully automated 398

transfer learning. 399

The use of alternatives to KS statistics to estimate the dis- 400

tance between distributions, such as KL-divergence, should 401

be investigated. SHAP is an indirect method to understand 402

the impact of latent intermediate features. Further study ex- 403

ploring and explaining latent intermediate features could im- 404

prove our understanding of transfer learning and domain 405

adaptation, and better meet transparency and compliance re- 406

quirements. 407

Finally we note that although the significant improve- 408

ments in accuracy demonstrated are small in terms of per- 409

centage improvements, such improvements in real world 410

lending could be of substantial economic importance in re- 411

ducing lenders’ losses due to loan defaults. 412
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