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Abstract—Analysing and learning from sequentially ordered
symbolic data is increasingly important in applications such
as finance and biology. Finding patterns that show interesting
behaviour, such as regularly repeating occurrences within a time
interval, can provide useful insight. In this paper we address
the problem of efficiently identifying such behaviours. Existing
approaches often require a target period to be specified, which
will limit possible patterns to those approximating the specified
periodicity, such as daily, monthly, quarterly and so on. In this pa-
per we extend one such approach, derived from frequent pattern
mining, to operate without the need for user-specified periodicity.
Our new algorithms can identify the time interval and periodicity,
or frequency of occurrence, of all periodically occurring patterns
within a certain used-specified tolerance. Experimental results of
our implementation show that the new approach can identify
many more patterns in a real-world financial dataset, while on
other sequential datasets it finds similar numbers of patterns
without significant reduction in efficiency compared to existing
approaches. We also verify the algorithm’s ability to recover
recurring patterns in controlled experiments on synthetic data.

Index Terms—sequential pattern mining, periodic patterns,
financial data mining

I. INTRODUCTION

Sequential data, often with timestamps, is increasingly com-
mon in applications, but most widely-used machine learning
algorithms, particularly those that find interpretable models,
are not designed to use it. Recently there have been several
novel approaches to mining sequential data [10], [13]. Most
work has been motivated by the problem of mining all frequent
itemsets that occur with certain types of frequency, or period-
icity. In this paper we are motivated by a different problem,
namely to find all periods for certain kinds of itemsets. This
is an issue which occurs in applications, e.g., in financial data,
where it may be important to identify all recurring patterns in
a transaction database. In this setting interpretable models are
needed, e.g., due to regulatory constraints [5].

There are many methods that can be used to mine recur-
ring patterns in sequential data (see [8] for a review). Such
methods typically require a user-supplied parameter specifying
the targeted periodicity, such as weekly, monthly, etc., for
repeating occurrences of patterns. However, in applications
where the focus is on discovery of periodic patterns, it may not
be possible to specify ahead of time the target periods that are
of potential interest. In this paper we describe a general data-
driven approach where the length of period, or periodicity, of
locally repeating patterns is estimated from data as part of
the pattern mining algorithm. This avoids the requirement for
the user to specify any target period in advance, and enables

the discovery of more locally repeating patterns than existing
approaches, with no significant reduction in efficiency.

In frequent pattern mining the principal measure is fre-
quency, that is, the number (or proportion) of occurrences
of a pattern in all transactions of the dataset. However, for
a pattern occurring repeatedly in sequential data, this needs
to be refined to capture a measure of its periodicity (if any)
as well as the number of occurrences. In this paper the
periodicity1 of a pattern in a sequential dataset is based on:
(i) the interval: a region of the sequence measured from left
to right, such that within the interval the pattern occurs with
a fixed (approximately) period; (ii) the period: the gap in
timesteps between each occurrence of the pattern during the
interval; and (iii) the support: the number of occurrences of the
pattern during the interval — strictly this can be derived as the
quotient of interval and period, but it is simple to compute it
while finding patterns and it can be used to satisfy a constraint
check on periodic patterns.

Since the period of a repeating pattern is essentially a
first-order difference between consecutive occurrences of the
pattern, we can use the second-order differences between
consecutive periods to tell us something about the periodicity.
In particular, if the second-order differences are small or close
to zero over an interval that is large relative to the periods
then the pattern is locally repeating [10] during that interval.
Depending on the application, we can quantify values of
interval or support that may be of interest. This implies a
range of target periods, but does not require the user to specify
a particular target period in advance.

The main contributions of this paper are: (i) we develop a
new algorithm to identify locally repeating patterns without the
requirement to specify a target period, (ii) we integrate it with
the implementations of frequent pattern mining [7] presented
by [10], (iii) we show on a real-world financial dataset and
with controlled experiments on synthetic data that our new
algorithm can find more patterns than the previous approach,
and (iv) we show by comparison with the existing algorithms
on two benchmark datasets that it does so without reductions
in efficiency.

The remainder of the paper is organised as follows. In
Section II we present relevant background, the framework is

1This overloads the normal use of the word “periodicity” which is typically
a predicate – some behaviour is either periodic or not – since we add a
quantification of the periodic behaviour in terms of its interval and period.
We could have used the term “frequency” – as in a behaviour with frequency
of 0.1 Hz occurs once every 10 seconds – but frequency already has a different
meaning in the frequent pattern mining literature.



in Section III, the new algorithm is in Section IV, and the
experimental evaluation is in Section V. We summarise our
results in Section VI and conclude in Section VII.

II. RELATED WORK

We review several of the most common approaches, focus-
ing on those that can generate interpretable (explainable) mod-
els, so we do not consider deep learning, e.g., [24]. In general,
there is a separation of approaches applied to sequential data
into two main areas: approaches in the first area tend to assume
real-valued (continuous) variables, and data that is sampled at
high-density or at regular frequencies (for example, data from
sensors, stock-price data, and so on), whereas in the second
area approaches can be characterised by typically dealing with
discrete (Boolean, or nominal) variables, where data instances
are ordered, although not necessarily timestamped. In the
second area the problem of finding “useful” and “interesting”
sequential patterns in data is typically framed as the discrete
data version of time series analysis [1]. That is, the typical
numerical values in time series are in sequential pattern mining
replaced by discrete values, such as those denoting sets of
items purchased in a retail transaction.

Sequential data was addressed early in research on frequent
pattern mining [2]. Typically algorithms assumed market bas-
ket data and extended frequent itemset mining with refine-
ments for sequential data, for example, to find sequences of
itemsets that have support above some threshold in a dataset.
Subsequently many extensions and refinements appeared in
the literature; an excellent survey is [8]. In the literature the
terminology of items and events came to be used interchange-
ably, so an itemset may mean a typical basket of items, or
a set of events, occurring over a time interval. Algorithms
can therefore be applied beyond market basket data to essen-
tially any discrete, sequential data from protein sequences to
timestamped financial data. Sequential pattern mining research
continued to relax the definition of pattern and periodicity.
For example, the time segments within which the periodicity
is defined for a particular activity or event types may be
dynamic, as in the record of an animal’s behaviour [18]. Other
variations of algorithms include time and memory efficient
periodic pattern mining [21], [22], variance application over
the period distribution in the database [6] and addressing the
periodic interestingness of patterns [16].

The most relevant algorithms for the work in this paper
are those that: (i) process atomic events, rather than itemsets
(referred to as event oriented patterns in [20]); and (ii) in-
clude timestamp values in their calculations. Many algorithms,
e.g., [14], [23] assume temporal databases or transaction
databases where transactions are sequentially ordered, but do
not have real-valued timestamps. However, we also consider
algorithms for recurring pattern discovery and pattern change
detection if they can be easily extended to include any of the
above features.

The latest sequential pattern mining methods in the literature
can be broadly divided into two groups: (i) algorithms that
include real time, but where the pattern sequence is fixed, i.e.,

missing events are not permitted, e.g., [10]; and (ii) algorithms
that do not consider an actual time-scale, but where patterns
may contain “wild cards” to indicate missing events, e.g., [13].
Our work will follow [10] who define a periodic pattern over
a sequence of transactions, each of which is an itemset with
a timestamp.

Importantly, in [10] periodic patterns are identified locally,
as they are not required to hold for the full duration of the
dataset, but have start and end points defined by repeated
occurrences with a period less than a user-supplied “maximal
period” parameter. Local patterns can be found for any itemset
by this approach, which can then be invoked within sequential
frequent pattern mining algorithms adopting different search
strategies such as breadth or depth-first to find all patterns
above a minimum support threshold [10]. Our method will
adopt the same approach as [10] but without the need to
specify the maximum period. In [9] the TSPIN algorithm
introduces the concept of the lability of periodic patterns, but
this also requires the specification of the maximal period.

The technique we introduce in this paper to identify peri-
odicity based on the differences between consecutive patterns
is related to the second-order approach of [3], although in that
work the goal is to identify anomalies based on contrastive
patterns, rather than locally recurring patterns.

III. TERMINOLOGY AND DEFINITIONS

In this section we describe the main concepts and repre-
sentation used for finding recurrent (locally periodic) patterns.
We assume a finite set of items U , where an item is typically
a discrete symbol representing the occurrence of some event
in data, such as the purchase by a user of some product, the
membership of a cluster for some real value, or simply the
appearance of some variable-value pair2 A transaction is a
pair (Ti, Xi), where Ti is the transaction index and Xi ⊆ U
is an itemset3. For an itemset Y , if the cardinality |Y | = k,
we say that Y is a k-itemset. We assume indices are totally
ordered. Specifically, in this paper all indices are assumed to
denote the time of occurrence of the transaction, for some unit
of time (e.g., microseconds, days, etc.). A sequential database
D is a sequence of n transactions ordered by indices Ti, for
1 ≤ i ≤ n. In this paper we will use dataset interchangeably
with database. Unless mentioned otherwise, we will adopt the
definitions for periodic frequent pattern mining from [10].

IV. AN ALGORITHM TO MINE PERIODIC PATTERNS

A periodic pattern for itemset I is a tuple (P,L,R, S),
where P is the base period of the periodic pattern, L and R are
the start and end timestamps (or transaction indices) denoting
the time-interval over which the pattern occurs periodically in
the dataset, and support S is the number of occurrences of
I in the periodic pattern4. A periodic pattern for itemset I
occurs in a sequence of S transactions (Ti, Xi) with I ⊆ Xi

for 1 ≤ i ≤ S with T1 = L and T|S| = R. In [10] a

2Terminology in this paper is based mainly on that of [1], [10], [19].
3In this paper multiple items in a transaction are only counted once.
4Support may be omitted since it can be derived from P,L,R; see Section I.



(local) periodic pattern is defined according to the parameters
determining the start and the end of the pattern: maximal
period (maxPer), maximum spillover (maxSoPer), minimum
duration (minDur) and minimum support (minSup). We also
use these parameters, except for maxPer. Itemset I (which
can be a single item or event) occurs in the dataset at
consecutive transactions (Ti, Xi), (Ti+1, Xi+1) supporting I
separated by a period = Ti+1−Ti, which must be less than a
user-defined maximal period maxPer. Although not explicitly
defined in [10] an event is understood to be a single item
transaction. The difference period−maxPer defines a surplus
for each transaction, which can be positive or negative. The
running (cumulative) sum of surpluses over time is called
the spillover . The spillover is always non-negative, which
is achieved by setting it according to max (0, spillover). The
time-interval of a pattern is defined by L and R, the start-point
and end-point of the pattern. The start-point is any timestamp
where surplus ≤ 0. The end-point of the pattern occurs
at a timestamp when spillover exceeds some user-specified
maximum value, i.e., spillover > maxSoPer. The general
sequence mining algorithm scans the sequential database for
the starts and ends of any periodic patterns for an itemset.
After the end of the previous pattern, the algorithm looks for
the next transaction to satisfy the start-point conditions for
the next pattern. An additional parameter, minimum duration
(minDur ), is introduced to constrain the time interval of the
pattern, discarding patterns that are too short in time.

With the general approach described above, in [10] three
methods, LPPM-breadth, LPPM-depth, LPP-Growth, define
how the search for patterns is actually performed. All three
methods use timestamp sets, replacing the TID sets in Apri-
ori [2]. Given the parameters described above, the algorithms
start with all single item itemsets, and expand each of them
recursively, applying pruning where possible. The end product
is of time-intervals that specify the intervals of all locally
periodic patterns by their start and end points. LPPM-breadth
expands itemsets keeping track of all partial itemsets, thus
consuming more memory than LPPT-depth which expands
each itemset until the branch is fully explored.

LPP-Growth is inspired by the FP-Growth algorithm [12]
but is substantially modified to handle timestamps. In the first
step, a prefix tree, here called LPP-tree, is constructed from the
transaction database, then, in the second step, periodic patterns
are mined recursively without scanning the original database.
Similarly to the LPP-breadth and LPP-depth algorithms, LPP-
Growth can be greatly simplified if the transaction is reduced
to a single event.

Two types of Local Periodic Pattern (LPP) mining, the
LPPM Breadth and Depth algorithms, are proposed in [10]
by combining two mining strategies. The first uses only the
Timestamp of Single Items (OTS strategy) to create periodic
itemsets by intersecting single item timestamps. The second
strategy was to map all itemsets with the same prefix (SPM)
to the same key. Theoretical considerations and experimen-
tal results in [10] demonstrated better memory and runtime
performance of LPPMBreadth2, which uses both strategies.

In the case of LPPMDepth, a better performing version,
LPPMDepth2, did not implement OTS to avoid generating
the same prefixes multiple times. For these reasons, in this
paper we base our algorithms and experimental evaluation
on LPPMBreadth2 and LPPMDepth2, while LPPGrowth is
unaffected by these considerations.

A. Algorithm AllPat

We propose a general algorithm to identify from an input
sequential dataset the locally periodic patterns for a given item-
set I , without the need to specify the target maximal period
maxPer. To implement an algorithm that is able to identify
all locally periodic patterns it turns out that it suffices to
change the “time2interval” procedure of [10]. These changes
result in the algorithm AllPat shown as Algorithm 1. Since this
algorithm is the common procedure to identify local periodic
patterns in each of the three algorithms developed in [10] we
are able to adapt each of these algorithms to find all periodic
patterns. The advantage of our proposed algorithm is that all
local periodic patterns can be identified without the need for
a used to specify maxPer, since it is not needed in AllPat.

We assume in Algorithm 1 that the input is an ordered list
of timestamps for an occurrence of a given itemset (note that
in actual implementations this is typically represented using a
data-structure such as a bitset for efficiency [10]). Essentially
the AllPat algorithm processes this list, which starts from the
earliest timestamp, searching for a stable periodic pattern of
occurrence of the itemset. AllPat does not require maxPer
because it maintains a list of periods for the current pattern
and updates the current period (curPer) as a function of the
periods on this list. In Algorithm 1 curPer is updated at line 16.

Different methods can be used to calculate curPer from this
list of periods; we have tested using either the most common
period (mode) and the mean, and both can give good results,
depending on the domain. We also implemented a version of
the algorithm that determines curPer in terms a set of target
periods such as weekly, monthly, quarterly, etc. This version
of the algorithm is called TargPat.

We can view maxSoPer as a tolerance parameter, i.e., by
how much any individual period is allowed to exceed the
periodicity of an identified pattern in the sequence, which is
the spillover (soPer ) of the currently open pattern. This is
tested at line 9. Here maxSoPer is specified as an amount of
time, but it could be as a percentage number of curPer . If the
spillover exceeds maxSoPer the end-point of the pattern has
been found, and the interval and base period are added to the
list of patterns at line 11.

The end of the sequence can be handled in different ways;
we essentially follow the method of [10], from line 21.

B. Example of the proposed algorithm

To illustrate the process of mining and to show differences
between the existing LPPM and our new algorithm AllPat,
an example dataset (Table I), similar to the transaction set in
Table 1 of [10], is used to run both versions of algorithms.
Since the final results are identical for LPPM Breadth, Depth



1 Algorithm AllPat(L,Q,R,S)
Input: List L of timestamps for transactions containing

itemset I , minimum duration minDur , tolerance
maxSoPer , minimum support minSup, last time
point in dataset largestTS .

Output: List of locally periodic patterns P .

2 Initialise: left = −1, t0 = L[0], t1 = L[1],
curPer = t1 − t0, soPer = 0.0, sup = 0, P = ∅.

3 for 1 ≤ i < |L| do
/* find left endpoint */

4 if left = −1 then
5 left = t0, curPer = t1 − t0,
6 sup = 0, soPer = 0.0

/* find right endpoint */
7 if left ̸= −1 then
8 soPer = soPer + t1 − t0 − curPer
9 if |soPer | > maxSoPer then

/* check duration */
10 if t0 − left ≥ minDur ∧ sup ≥ minSup

then
11 P = P.add(curPer , left , t0, sup)
12 left = −1
13 sup = 0

/* back up to last period */
14 t1 = t0
15 else
16 curPer = curPer.get(t0, t1)
17 t0 = t1
18 i = i+ 1
19 t1 = L[i]
20 sup = sup + 1

/* add final time point */
21 if left ̸= −1 then
22 soPer = soPer + largestTS − t0 − curPer
23 if |soPer | > maxSoPer then
24 if t0 − left ≥ minDur ∧ sup ≥ minSup then
25 P = P.add(curPer , left , t0, sup)
26 else
27 if

largestTS − left ≥ minDur ∧ sup ≥ minSup
then

28 if largestTS ̸= t0 then
29 sup = sup + 1
30 P = P.add(curPer , left , largestTS , sup)

31 return P

Algorithm 1: A general algorithm for identifying locally
periodic itemset patterns without the need for a target period.
See text for details.

and Growth, in this example we only use LPPMDepth2 and
LPPMDepth2 allPat, which is our extended version. In the
example, the following parameters are used:

LPPM: minDur=4, maxPer=2, maxSoPer=2
AllPat: minDur=4, maxPer=10, maxSoPer=2

Since AllPat does not use maxPer, this parameter is set to the
maximal timestamp value. We show only results for item “a”
as this suffices to illustrate the process.

Patterns mined for “a” from Table I data:
LPPM: period 2, interval 1 - 13.
AllPat: period 2, interval 1 - 10; period 3, interval 10 - 18.

TABLE I
AN EXAMPLE OF A SEQUENTIAL TRANSACTION DATASET

Items Timestamp ts Gap soPer curPer curPer
LPPM AllPat AllPat

a,b,c,e 6/06/2018 1 0 start,2 0 start,0
a,b,c,d 7/06/2018 2 1 1 1 0
a,b,e 9/06/2018 4 2 1 1 1
a,c,e 10/06/2018 5 1 0 2 0
a,b,d,e 12/06/2018 7 2 0 1 1
a,b,c,e 15/06/2018 10 3 1 2 2,end

start,0
b,c,d,e 18/06/2018 13 3 2,end 1,3 1
a,c 22/06/2018 17 4 start,2 3 1
a,b,d 23/06/2018 18 1 1 4 -2,end

start,0
a,b 25/06/2018 20 2 1 3,2 0

LPPM starts at timestamp index ts1 with soPer=2. After
checking maxPer at ts17 soPer becomes 4, so the current
pattern ends at ts13 and the algorithm starts looking for the
next pattern at ts17. It cannot start at ts13, because the ts13
-ts1 interval exceeds maxSoPer. Since at the last timestamp,
ts20, ts20-ts17 < minDur, LPPM discards the pattern. AllPat
also starts with ts1, but with initial soPer=0. At ts13 soPer=3,
therefore the current pattern ends at ts10. Initialising soPer=0
allows AllPat to start the next pattern at the same timestamp
where the last pattern ended, ts10. Since at ts20 soPer becomes
-3, the second pattern ends at ts18 and the third pattern starts
at the same timestamp. The third pattern is not saved as as the
last ts20 has duration < minDur. In summary, LPPM finds
one pattern and cannot include the ts13-ts17 interval in the
pattern. AllPat on the other hand covers the whole transaction
set from ts1 to ts ts18, and breaks down the transaction set
interval into two patterns.

V. EXPERIMENTAL EVALUATION

Our approach to evaluation in this paper is based on the follow-
ing observation [17]: “In general, the most suitable evaluation
criteria for a given problem tends to be domain-specific. That
is, the evaluation criteria depends on what type of sequential
patterns are of most interest in the domain application. Thus,
the most general benchmark should provide a set of target
patterns and evaluation criteria that is appropriate for each
target pattern. Then, users can select the appropriate target
patterns and evaluation criteria required for the domain in
order to determine the most appropriate mining method for
the application.”

In this section we cover experimental evaluation of our
method on (i) an open-source financial dataset, (ii) synthetic
datasets for controlled experiments to assess the ability of our
algorithm to recover known patterns, and (iii) compare it to
the principal methods in [10] on two benchmark datasets.

A. Datasets

Performance of the proposed algorithms was evaluated on
four datasets (Table II). The first three datasets contain real-
world data with various characteristics, frequently used for



benchmarking. The “Berka” and the “Artificial” datasets were
selected to specifically evaluate algorithms on our domain of
interest, financial transactions. Two datasets, “Kosarak” and
“Online retail” are used as benchmarks for sequential pattern
mining. The latter is a relatively small but dense dataset,
measured by the number of items per record, while while
the other three datasets are much sparser, containing about a
million records each. Since the first three datasets represent an
unsupervised learning task, we are mainly interested in runtime
performance. The fourth dataset is artificially generated with
known patterns as ground truth, with added noise, designed
to evaluate the ability of different algorithms to recover true
patterns, evaluated in terms of precision and recall. The
datasets are described in more detail in the following sub-
sections.

TABLE II
CHARACTERISTICS OF THE DATASETS

Dataset #transactions #items #items per record
Berka 1,056,320 26,435 1.3
Kosarak 990,002 41,270 8.0
Online retail 23,260 4,224 22.7
Artificial 1,000,000 1 1.0

1) Financial transaction dataset – Berka Bank: The Berka
dataset5 contains information on anonymised transactions of a
Czech bank, consisting of 4,500 accounts and about a million
transactions. The transaction sequences exhibit a variety of pe-
riodic patterns, such as weekly, monthly and quarterly, as well
as irregular, noisy instances. These transactions contain also
irregular and unexpected patterns, for example bi-monthly,
apparently more common in Europe. This is where our al-
gorithms are expected to find meaningful patterns, without
requiring a target period parameter setting.

Each Berka transaction contains 7 columns: account id,
date, type, operation, amount, balance, k symbol. An example
is: 2177, 930105, CREDIT, COLLECTION FROM ANOTHER
BANK, 5123, 5923, OLD AGE PENSION. For each account,
we convert all transactions to the LPPM format [7] as
“itemset|ts”; e.g., “1 2|5”, where 1 and 2 are items in the
itemset, and 5 is the timestamp. Each unique combination of
type, operation and k symbol is converted to a numeric item
identifier, and date to timestamp in days starting from 1. If
more than one transaction is on the same date, each of them
becomes one item in the same itemset.

2) Benchmark datasets – Online Retail and Kosarak: This
Online Retail dataset contains transactions for an online retail
company recorded between 2009 and 2011. The company sells
gift-ware mainly to wholesale customers. The data, originally
from the UCI repository, has been pre-processed for evalu-
ation of algorithms on sequences of itemsets. The Kosarak
dataset [4] was created from sequences of click-stream data
from a Hungarian news portal, pre-processed and converted to
SPMF format. Both datasets are available for download6.

5Available from: http://relational.fit.cvut.cz/dataset/Financial
6Available from: http://www.philippe-fournier-viger.com/spmf

3) Artificial dataset generation for controlled experiments:
We defined time periods, such as 7, 14, 30, and 90 days, that
are the most frequently observed based on an analysis of real-
world financial transaction datasets. The dataset generation
algorithm selects uniformly at random one of these intervals,
called p, and generates n transactions containing the pattern
with an interval period of (p ± delta). Here, n is an integer,
between 1 and 24, selected uniformly at random. A user-
defined value is chosen for delta which can be expressed as
an absolute number of days (e.g., 2 days) or as a percentage
of days (e.g. 17% of 14 days). Such variations are frequently
observed in real datasets. For instance, a customer may typi-
cally pay a fortnightly payment every 14 days, but occasionally
after 15 or 13 days. Assuming a normal distribution with mean
p, and using delta as the standard deviation, random time
interval values are generated. The above process is repeated
to generate the required number of n transactions for each
transaction sequence.

For this paper we used the data generator to produce six
versions of the Artificial dataset with parameters reflecting
characteristics of banking transactions. Three of these datasets
were generated with an absolute value of delta, whereas the
remaining three are generated with a relative delta, expressed
as a percentage of the time interval between, e.g., 7, 14,
30, or 90. The idea is to make the standard deviations 1/3,
2/3, and 3/3 equal to the observed variations (i.e., 2 absolute
days or 23% of interval days) in the customer transactions.
As a result, the standard deviations for the three datasets for
2 absolute days are 0.67 (=2*1/3), 1.33 (=2*2/3), and 2.0
(=2*3/3), respectively, while the standard deviations for 23%
of interval days are 7.7% (=23*1/3), 15.3% (=23*2/3), and
23% (=23*3/3).

Each dataset contains one million records, with the four
intervals (7, 14, 30 and 90) in approximately equal proportion.
Each interval, with delta applied, is repeated up to 24 times
to make a (noisy) periodic pattern.

B. Evaluation methodology

The goal of the evaluation was to compare time performance
and memory consumption of our extended algorithms with the
original ones in [10]. Similar to [10], we varied parameters for
each dataset, while trying to match the parameters for Kosarak
and Online retail used in [10]. For some parameters, however,
this was not always possible, mainly due to the fact that in
our methods the spillover is calculated over local, dynamically
found periods, whereas the original algorithms base their
calculations on a globally set maximal period (maxPer). This
makes our pattern intervals much shorter. Hence minimal
duration also needed to be shorter. For this reason, the total
number of itemsets and patterns would be too large to for the
algorithm to complete in reasonable time. Therefore, we stop
testing when the number of itemsets with periodic patterns
found by each algorithm reached 10 million. We consider
this methodology the most fair for both the LPPM and AllPat
algorithms.



For Berka and Artificial datasets the chosen parameters are
close to real-life banking transaction settings, based on domain
knowledge. We conducted experiments with two maximal
spillover (tolerance) values: (i) an absolute value of two days,
which is a common number of days that banking customers
deviate from their periodic transaction dates, and (ii) a tol-
erance of 23% of the current period, which is considered a
maximal reasonable deviation. This makes for deviations of
2 days for weekly transactions, about one week for monthly,
and about three weeks for quarterly transactions.

There is also one difference in parameter settings between
LPPM and AllPat. The maximal period maxPer is not used
in AllPat, as the spillover (tolerance) is based on the current
period (see Section IV-A, whereas for LPPM this parameter is
set by the user to an expected maximal period of any pattern.

All experiments were completed on an Intel Core i7 laptop
with 32GB RAM, or a comparable desktop computer, with
all experiments for a given dataset run on the same computer.
Hardware configuration, however, is considered less important,
since we compare only relative values.

C. Runtime performance comparison
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Fig. 1. Shown are performances in finding periodic patterns across all Berka
accounts for the base algorithm compared to the extension finding all patterns.
Clearly the new algorithm finds many periodic patterns not found by the
base algorithm. Note that since all patterns are discovered when running each
search strategy (depth, breadth or growth), the numbers of patterns found are
the same. Two versions of the tolerance, i.e., maxSoPer on variations in
periodicity are shown. On the left, the results are for a value of ±2days,
whereas on the right these are for ±23% of the current period (curPer ).

Comparing time performance on all Berka accounts, a
general observation is that AllPat finds approximately eight
times more patterns than the base algorithms, with minimal
time difference.

Both the absolute and 23% tolerance settings show similar
trends and complete the mining in similar time. With the
absolute tolerance, however, about 24% more patterns are
found. This is because the larger tolerance leads to longer
pattern intervals and patterns being merged.

For Online retail (Figure 2), the runtime and the number of
patterns are similar when comparing each pair of algorithms.
It is apparent, however, that both the extended and the baseline
LPPMBreadth2 algorithms discover about four times more

patterns in the same number of itemsets. These differences
stem from the way the search for patterns works for different
algorithms. Depth-first (DFS) and and breadth-first search
(BFS) process single item itemsets first. After that, DFS
combines items by progressively extending itemsets with the
same prefix. More patterns are found initially for single items.
BFS, on the other hand, processes more smaller itemsets
first, so tends to find more patterns in the first 10 million
itemsets. Since the Online retail dataset is relatively small
(23,260 transactions), the algorithms manage to discover a
large number of patterns in these smaller itemsets. However,
the LPPMBreadth2 based algorithms are much slower for the
same number of patterns. The explanation found in [10] is
that the search space for small minDur and maxSoPer is much
larger. LPPMBreadth2 groups items with the same prefix using
a map, which reduces the memory usage but increases the
processing time. The other two base algorithms do not use
maps.

Similar results are obtained for the runtime on the Kosarak
dataset (Figure 3), which is a very large and relatively dense
dataset with over 41,000 distinct items. For similar reasons to
Online Retail, the Kosarak dataset test results in Figure 3 show
that LPPMBreadth2 algorithms discover more patterns but are
about 2.5 times slower than LPPMDepth2, and an order of
magnitude slower than LPPGrowth.

Comparing the base LPPM with AllPat, the latter tends to
get larger number of patterns in shorter time. The differences,
however, are very small. This is a desirable result, showing
that the changes made to the base algorithms did not affect
the runtime performance.

D. Memory usage comparison

Figure 4 shows memory consumption by the Java imple-
mentation of the algorithms on Online retail and Kosarak for
the first 10 million itemsets. The Berka dataset is not included
in this chart, as each account has to be processed separately,
so the memory usage is minimal with a constant value of 5.12
Mb for all algorithms in our testing. The LPPMDepth and
LPPGrowth pairs of algorithms (base and AllPat) use similar
amounts of memory. The LPPMBreadth version uses much
less memory at the cost of much higher processing time, as
seen in Section V-C.

E. Evaluation of pattern identification on Artificial datasets

Here we investigate the ability of the algorithms to dis-
cover known periodic patterns from noisy data Since this
is synthetic data we conducted controlled experiments and
evaluated the number of patterns identified by the algorithm
with different parameters.. We generated datasets as described
in Section V-A3 and obtained test results for F1 scores.

In the following tests, AllPatand LPPMare evaluated on
Artificial datasets with perfect periods of 7, 14, 30 and 90 days.
The number of patterns for each period was approximately
equal and randomly spread in the dataset. These periods
commonly occur in real-time data. Only one LPPM algorithm,
LPPMDepth2, was tested, since all base algorithms should
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return the same results when run to completion. Four tests were
conducted, one for each of the periods, where maxPer and
minDur were set to the value of that period, and maxSoPer=1.
In order to make the comparison possible, we added the same
algorithm (described in Section IV-A) of nominating the base
periods to LPPMDepth2 as they are used in AllPat. For the
same sequence of periods in a periodic pattern, both LPPM and
AllPat assign the same period, e.g., for the periodic sequence
of timestamps 1, 8, 15, 20, the base period is 7.

TABLE III
F1 SCORE ON GENERATED PERFECT DATA (STDEV-0) LPPM:

MAXPER=MINDUR=[7,14,30,90], MAXSOPER=1

LPPM:7 LPPM:14 LPPM:30 LPPM:90
7 day 1 0.8233 0.6142 0.4047

14 day 0 0.8179 0.6107 0
30 day 0 0 0.6068 0
90 day 0 0 0 0

Micro F1 0.4047 0.5498 0.5243 0.2537
Macro F1 0.25 0.4103 0.4579 0.1012

In Table III, micro F1 scores are shown for each test and
period, and the last two rows show micro and macro F1 for
all periods. For AllPat, minDur was set to 7. The table does
not show the results for AllPat, since the F1 scores are all 1.0,
as expected.

For period 7 and maxPer=minDur=7, the base algorithm
obtains a perfect F1 score, since 7 is the smallest period. For
larger periods, the scores tend to get lower with higher period
values, which can be explained by the way these algorithms
combine separate periodic patterns into patterns with larger
support up to the value of maxPer. Since the majority period
is reported as the base period, for higher minDur, especially
90, the algorithm reports the majority period for a sequence
that may combine patterns with different periods, as long
as minDur is achieved. We note, however, that the base
algorithms, in accordance with their design, do recognise
almost all periodic patterns, although without defining their
periodicity, as our extensions are designed to do.

Next, we show how well our algorithms discover 7, 14, 30
and 90 day patterns in the Artificial data, measured by the
F1 score. Noisy, i.e., imperfectly periodic, time intervals were
randomly selected as discussed in Section V-A3. In these tests
we included only our algorithms, as the base algorithms are

not designed to separate patterns by the length of periods. We
include, however, our general algorithm AllPat and the TargPat
version, specifically targeting these four periodic pattern.
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Fig. 5. F1 score for AllPat and TargPat with absolute delta and maxSoPer=2

In Figure 5, as expected, the F1 score decreases from 0.88
to 0.36 when the standard deviation increases from 0.67 to 2.0.
The decrease is approximately the same for all four periods.
The performance of TargPat, however is not affected by this
amount of noise.
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Fig. 6. F1 score for AllPat and TargPaton Artificial data with maxSoPer=23%

In the next chart (Figure 6), the data imperfection delta is
increased to 1/3, 2/3 and 1.0 of 23% of current period interval,
which is larger than in the case of absolute maxSoPer, as
shown in Table IV, especially for the 90 period. The F1 score,
in comparison with Figure 5, dropped by about 40%, while
TargPat is almost unaffected.

In summary, TargPat is much more suitable when the
periods of periodic patterns are known in advance. When we
are interested in all patterns, AllPat is more suitable, although
the accuracy may be lower.

TABLE IV
STANDARD DEVIATION APPLIED TO GENERATED DATA FOR EACH PERIOD

Per maxSoPer 1/3*maxSoPer 2/3*maxSoPer 1*maxSoPer
7 1.6 0.5 1.1 1.6

14 3.2 1.1 2.1 3.2
30 6.9 2.3 4.6 6.9
90 20.7 6.9 13.8 20.7
all 2 0.7 1.3 2

F. A qualitative evaluation on real-world transaction data

Since interpretability of periodic patterns is important, in
this experiment we investigated both the numbers of patterns



identified on the Berka dataset for periods around 7, 14, 30, 90,
in addition to inspecting the patterns from a selected account
for potential insight.

In Figure 1 we showed that for the Berka dataset AllPat
discovers an order of magnitude more patterns than LPPM
(46,000 vs. 363,000). Table V shows the number of itemsets
and patterns discovered by LPPM and AllPat for all accounts
of the Berka dataset.

TABLE V
NUMBER OF ITEMSETS AND PATTERNS FOR BERKA DATASET USING FOUR

VALUES OF PARAMETERS

Algorithm maxPer minDur maxSoPer #Itemsets #Patterns
LPPM 7 5 2 6622 38217
LPPM 14 12 2 6497 32507
LPPM 30 28 2 36487 261671
LPPM 90 88 2 33181 36238
AllPat no limit 5 2 44046 427252

For LPPM, maxPer and minDur are selected to extract
specific patterns for comparable results. For AllPat, the maxPer
parameter is not used. The total number of patterns for LPPM
is 368633, still less than AllPat, noting that, as discussed in
Section V-E, many patterns may be duplicated.

Next, we analysed in more detail specific fragments of pat-
terns obtained by running the algorithms on the Berka account
(# 8261 in the dataset) with the largest number of deduplicated
transactions (over 400), finding important differences between
AllPat and LPPM specific to this domain.

TABLE VI
EXAMPLE CASES FROM MINING THE LARGEST BERKA ACCOUNT

Case Alg. Item Pattern TS From TS To #Trans.
1 LPPM 3 p30 33 63 1

3 p30 125 155 1
AllPat 3 p31 2 186 6

2 LPPM 0 p150 0 510 5
TargPat - - - - -
AllPat 0 p150 210 510 3

3 LPPM 3 p30 125 155 3
p30 186 216 3

AllPat 3 p31 2 186 7
p31 186 337 7

4 LPPM 13 p5 146 2042 129
AllPat 13 p5 146 151 2

p26 151 177 3
p5 177 182 2

p25 182 207 3
5 LPPM 10 p30 60 346 16

AllPat 10 p30 60 150 4
p7 150 157 2

p23 157 180 2
7 more

6 LPPM 13 p5 146 151 2
p5 177 182 2
p5 207 212 2

AllPat 13 p5 146 151 2
p26 151 177 2
p5 177 182 2

p25 182 207 2
p5 207 212 2

In Table VI the item codes used are translated to the

following original banking transaction types:
0: CREDIT, CREDIT IN CASH
3: CREDIT, COLLECTION FROM ANOTHER BANK
10: DEBIT, CASH WITHDRAWAl
13: DEBIT, REMITTANCE TO ANOTHER BANK
The p<n> notation denotes a pattern with base period n, e.g.,
p31 has a period of 31 days; TS From and To denote the
interval start and end-points, and #Trans is the number of
transactions containing the pattern, i.e., its support.
Case 1: LPPM breaks the monthly pattern into two patterns,
since the maxPer and maxSoPer parameters prevent discovery
of both the 30 and 31 day periods in the monthly pattern.
AllPat with the same parameters uses negative soPer credit
to discover both periods plus additional ones not covered by
LPPM.
Case 2: LPPM with minDur=180 concatenates p30, p180 and
p150 together, reported as p150. TargPat does not discover
p150 at all, since this period is not on the target list and is
not expected. AllPat separated the three patterns and properly
reports p150.
Case 3: LPPM misses interval 155-186, because at 155 soPer
reaches maxSoPer. AllPat does not have the maxPer limitation
and includes this interval in p31.
Case 4: LPPM with higher maxPer concatenates many patterns
together, while AllPat separates the whole interval into four
patterns.
Case 5: To assess a bank account it is important to identify
any irregularities in regular transactions. LPPM shows one
P30 pattern between ts 60 and 346. AllPat identifies regular
monthly withdrawals between timestamps 60 and 150, and
then reports a number of irregular periods from 7 to 30 days.
Case 6: Item 13 (REMITTANCE TO ANOTHER BANK) is
very irregular. LPPM discovers only p5 with missing intervals,
whereas AllPat shows a variety of patterns from p5 to p26 fully
covering the 146-212 interval.

The above cases show benefits of using AllPat on real
banking data, highlighted in IV: (i) AllPat tends to cover
time intervals more completely since it uses negative soPer
to dynamically adapt to slightly smaller and larger periods,
(ii) it finds more detailed patterns that include irregularities,
and (iii) it better adapts to slightly changing periods, e.g., for
30 and 31 days.

The above cases identify some atypical patterns found by
AllPat, such as short patterns of 5 and 25 days. These patterns
alone may not be interesting, but when analysed in combina-
tion with other patterns may provide useful information about
the status of an account.

VI. DISCUSSION

In the previous section we presented results for runtime,
and omitted results for memory, since this is mainly a factor
of itemset size, and in this work we are mainly concerned with
itemsets of (relatively small) bounded size.

While testing the AllPat algorithms, we discovered some
interesting features of the algorithms, in addition to those
reported in [10]. First, the Breadth-First Search algorithms



examine smaller itemsets first, resulting in a much larger
number of discovered patterns in the first stage of mining.
Second, the number of patterns does not tell the whole story.
One algorithm can find just one pattern repeated 1000 times,
while another may find a large number of patterns, each
with very low support. A more suitable metric is required
to measure the quality of patterns in a given domain. Third,
the base algorithms find a smaller number of patterns with
larger support if the periods are smaller than maxPer. This
is observed in the first two thousand Kosarak single item
itemsets. If periods tend to frequently exceed maxPer, the
base algorithms report more patterns with lower support,
as observed in Kosarak results. For the AllPat algorithms,
the differences between subsequent periods matter the most.
If these differences are within maxSoPer tolerance, AllPat
reports a smaller number of patterns with larger support. As the
differences get larger, the opposite occurs. These differences
between periods do not matter to the base algorithm, as long
as they do not much exceed maxPer, i.e., they are within
maxSoPer tolerance.

These characteristics of AllPat methods allow them to
discover more fragmented patterns, but with more suscepti-
bility to noise. To control this we implemented a minimal
support parameter, but it was not used in the comparison
tests for compatibility with the original algorithms. We have
not addressed the issue of the “interestingness” of discovered
patterns [11] in this paper. However, research in a recent
book [15] addresses this issue and we will investigate it for
further work.

VII. CONCLUSION

The AllPat method proposed in this paper extends the state-
of-the-art LPPM algorithms by removing the requirement to
specify in advance the target period. Changing to a data-driven
method of identifying periodic behaviour enables greater flex-
ibility in the patterns that can be identified in sequential data
and provides users with more detail. Since the new method is
fully compatible with the main search strategies implemented
by [10] these improvements retain the efficiency of the base
algorithms, as we have shown empirically. When tested on the
task of recovering known periodic patterns from noisy data
our method performs well. On real-world data we showed
the method’s ability to find periodic patterns that the base
algorithms miss, and with more detail on the periodicity that
can be a potentially useful source of insight. Further work
on methods for pattern interestingness may help to manage
the greater detail on periodicity found by our approach. For
reproducibility, code and data will be online on publication.
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